Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
C
cnvCallerGPU
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
gad-public
cnvCallerGPU
Commits
9468f249
Commit
9468f249
authored
Nov 07, 2024
by
Theo Serralta
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Wrong variable in compute_mean_std
parent
09497ec1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
16 deletions
+11
-16
cnv_sv_caller_gpu.py
cnv_sv_caller_gpu.py
+11
-16
No files found.
cnv_sv_caller_gpu.py
View file @
9468f249
...
...
@@ -445,7 +445,7 @@ def dico_mappabilite(mappability_file):
end_time_3
=
time
.
time
()
elapsed_time_3
=
end_time_3
-
start_time_3
logging
.
info
(
f
"In dico_mappability : Ending merge intervals with the same score (Time taken: {elapsed_time_
2
:.4f} seconds)"
)
logging
.
info
(
f
"In dico_mappability : Ending merge intervals with the same score (Time taken: {elapsed_time_
3
:.4f} seconds)"
)
end_time
=
time
.
time
()
elapsed_time
=
end_time
-
start_time
...
...
@@ -680,8 +680,7 @@ def calcul_med_same_gc(gc_results, depth_correction_results, chr):
"""
Calculate the median depth correction for each unique GC content value.
This function computes the median depth correction values for each unique GC content value in `gc_results`,
filtering out zero values from `depth_correction_results`.
This function computes the median depth correction values for each unique GC content value, filtering out zero values.
Parameters
----------
...
...
@@ -689,8 +688,6 @@ def calcul_med_same_gc(gc_results, depth_correction_results, chr):
A list or array of GC content values.
depth_correction_results : list or numpy.ndarray
A list or array of depth correction values.
chr : str
The chromosome identifier for which the medians are calculated.
Returns
-------
...
...
@@ -735,15 +732,12 @@ def calcul_moy_totale(normalize_depth_results, chr):
"""
Calculate the mean of non-zero normalized depth results.
This function filters out zero values from the normalized depth results and computes the mean
of the remaining non-zero values.
This function filters out zero values from the normalized depth results and computes the mean of the remaining values.
Parameters
----------
normalize_depth_results : list or numpy.ndarray
A list or array of normalized depth values.
chr : str
The chromosome identifier for which the mean is calculated.
Returns
-------
...
...
@@ -757,15 +751,15 @@ def calcul_moy_totale(normalize_depth_results, chr):
# Filter results to remove zero values
non_zero_results
=
normalize_depth_results
[
normalize_depth_results
!=
0
]
# Calculate the mean of non-zero results
mean_chr
=
np
.
mean
(
non_zero_results
)
if
non_zero_results
.
size
>
0
else
0
mean_chr
_norm
=
np
.
mean
(
non_zero_results
)
if
non_zero_results
.
size
>
0
else
0
sys
.
stderr
.
write
(
"Chromosome :
%
s, mean_chr :
%
s
\n
"
%
(
chr
,
mean_chr
)
)
logging
.
info
(
f
"Mean chr_norm_no_zero = {mean_chr_norm}"
)
end_time
=
time
.
time
()
elapsed_time
=
end_time
-
start_time
logging
.
info
(
f
"Leaving calcul_moy_totale for {chr} (Time taken: {elapsed_time:.4f} seconds)"
)
return
mean_chr
return
mean_chr
_norm
def
calcul_std
(
normalize_depth_results
,
chr
):
"""
...
...
@@ -805,7 +799,7 @@ def calcul_std(normalize_depth_results, chr):
return
std_chr
def
compute_mean_std_med
(
ratio_par_window_
results
,
chr
):
def
compute_mean_std_med
(
ratio_par_window_
norm_results
,
chr
,
normalize_depth_results
):
"""
Compute the mean, standard deviation, and median of non-zero ratio results per window.
...
...
@@ -814,7 +808,7 @@ def compute_mean_std_med(ratio_par_window_results, chr):
Parameters
----------
ratio_par_window_results : list or numpy.ndarray
ratio_par_window_
norm_
results : list or numpy.ndarray
A list or array of ratio values per window.
chr : str
The chromosome identifier for which the statistics are calculated.
...
...
@@ -829,8 +823,9 @@ def compute_mean_std_med(ratio_par_window_results, chr):
start_time
=
time
.
time
()
# Filter results to remove zero and -1 values
ratio_par_window_results
=
np
.
array
(
ratio_par_window_results
)
non_zero_results
=
ratio_par_window_results
[
ratio_par_window_results
!=
0
]
ratio_par_window_norm_results
=
np
.
array
(
ratio_par_window_norm_results
)
non_zero_results
=
ratio_par_window_norm_results
[
ratio_par_window_norm_results
!=
0
]
non_zero_results
=
non_zero_results
[
np
.
isfinite
(
non_zero_results
)]
# Initialize list for stats computation
table
=
[]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment