Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
C
cnvCallerGPU
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
gad-public
cnvCallerGPU
Commits
ad1eeb2e
Commit
ad1eeb2e
authored
Nov 07, 2024
by
Theo Serralta
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add new README
parent
803c9cd2
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
110 additions
and
0 deletions
+110
-0
README.txt
README.txt
+110
-0
No files found.
README.txt
0 → 100644
View file @
ad1eeb2e
# Genomic CNV and SV Detection with GPU Acceleration
This project performs copy number variation (CNV) and structural variant (SV) detection on genomic data, leveraging
GPU acceleration to enhance performance for large datasets. It includes calculations of mappability, GC content, depth,
and normalization, followed by variant detection and result output in various formats, including VCF for SVs.
## Features
- **Copy Number Variation (CNV) Analysis**: Analyzes depth of coverage across genomic windows to detect CNVs.
- **Structural Variant (SV) Detection**: Identifies SVs (e.g., deletions, inversions, translocations) using paired-end
and split-read alignments.
- **GPU Acceleration**: Utilizes CUDA-enabled GPU processing to improve the efficiency of mappability, GC content,
depth, and normalization calculations.
- **Customizable Parameters**: Adjustable settings for window size, step size, and z-score thresholds.
### Author:
**SERRALTA Theo**
### Collaborators:
**DUFFOURD Yannis**
### Laboratory:
**GAD**
### Date:
**28/09/2023**
## Installation
1. Ensure you have Python and CUDA installed.
2. Install the necessary Python packages:
```bash
pip install numpy pysam pycuda pandas
```
3. Clone this repository.
## Usage
### Platform
Currently, this software is designed to run exclusively on the CCUB (Computing Center of the University of Burgundy).
### Directory
Navigate to the directory:
```bash
cd /work/gad/shared/analyse/test/cnvGPU/test_scalability/
```
### Recommended Execution with qsub
Run the following command to execute using qsub:
```bash
qsub -v NUM_CHR=<ALL_or_num_chr>,INPUTFILE=</path/to/the/input/bam/file>,LOGFILE=</path/to/the/log/file>,OUTPUT=</path/to/the/output/file>,OUTPUT_PAIRS=</path/to/the/output_pairs/file>,OUTPUT_SPLITS=</path/to/the/output_splits/file> ./wrapper_cnvGPU.sh
```
Example:
```bash
qsub -pe smp 1 -v NUM_CHR=ALL,INPUTFILE=/work/gad/shared/analyse/test/cnvGPU/test_scalability/dijen1000.bam,OUTPUT=exemple.out.tsv,OUTPUT_PAIRS=exemple.out_pairs.tsv,OUTPUT_SPLITS=exemple.out_splits.tsv,LOGFILE=exemple.log ./wrappers/wrapper_cnvGPU.sh
```
### Modifying Parameters
Certain parameters can be customized within the wrapper script:
- `window_size` (w): Default is `-w 100`
- `step_size` (s): Default is `-s 10`
- `zscore_threshold` (z): Default is `-z 1.5`
- `lengthFilter` (l): Default is `-l 200`
### Direct Execution without Wrapper
Alternatively, you can execute the program directly with Singularity:
```bash
singularity exec --nv -e /work/gad/shared/bin/singularity_images/pycuda/pycuda_sam.1.1.sif python3 /work/gad/shared/analyse/test/cnvGPU/test_scalability/cnv_sv_caller_gpu.py -b <input_bamfile> -c <int or "ALL"> -w <int> -s <int> -z <float> -l <int> -o <output_cnv_file_vcf> -p <output_pairs_file> -m <output_splits_file> -e <logfile>
```
Example:
```bash
singularity exec --nv -e /work/gad/shared/bin/singularity_images/pycuda/pycuda_sam.1.1.sif python3 /work/gad/shared/analyse/test/cnvGPU/test_scalability/cnv_sv_caller_gpu.py -b example.bam -c ALL -w 100 -s 10 -z 1.5 -l 200 -o example_cnv.vcf -p example_pairs.tsv -m example_splits.tsv -e example.log
```
## Output Files
- **VCF File**: Contains structural variant calls with relevant information on chromosome, position, variant type,
copy number, etc.
- **Paired-Read Events**: Details abnormal paired-end read alignments indicating possible structural variations.
- **Split-Read Events**: Lists split-read alignments for further variant investigation.
## Dependencies
- Python 3.x
- CUDA-compatible GPU
- [Numpy](https://numpy.org/), [pysam](https://pysam.readthedocs.io/), [pycuda](https://documen.tician.de/pycuda/),
[pandas](https://pandas.pydata.org/)
## License
This project is licensed under the MIT License.
## Acknowledgments
This tool was developed to assist with high-performance genomic analyses, utilizing GPU acceleration to make
large-scale CNV and SV detection feasible on big datasets.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment