test_gpu_time_normalisation.py 65.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
import pysam
import sys
import getopt
import logging
import numpy as np
from numpy.polynomial import Polynomial
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
import pycuda.gpuarray as gpuarray
from pycuda.autoinit import context
import multiprocessing
from multiprocessing import Process, Queue
import time
import subprocess
import pandas as pd
import scipy

# Options


def parse_arguments():
    """
    Parse command-line arguments.

    This function parses the command-line arguments provided to the script and extracts the values for various parameters.

    Parameters
    ----------
    None

    Returns
    -------
    tuple
        A tuple containing the following elements:
        bamfile_path : str or None
            The path to the BAM file.
        window_size : int or None
            The size of the window.
        step_size : int or None
            The step size for the analysis.
        zscore_threshold : float or None
            The threshold for the Z-score.
        lengthFilter : int or None
            The filter for length.
        output_file : str or None
            The path to the output file.
        logfile : str or None
            The path to the log file.

        Each element can be None if the corresponding argument was not provided.
    """
    try:
        opts, args = getopt.getopt(sys.argv[1:], "b:c:w:s:z:l:t:o:e:")
        (
            bamfile_path,
            num_chr,
            window_size,
            step_size,
            zscore_threshold,
            lengthFilter,
            output_file,
            logfile,
        ) = (None, None, None, None, None, None, None, None)
        for opt, arg in opts:
            if opt in ("-b"):
                bamfile_path = arg
            if opt in ("-c"):
                num_chr = arg
            if opt in ("-w"):
                window_size = int(arg)
            if opt in ("-s"):
                step_size = int(arg)
            if opt in ("-z"):
                zscore_threshold = float(arg)
            if opt in ("-l"):
                lengthFilter = int(arg)
            if opt in ("-o"):
                output_file = arg
            if opt in ("-e"):
                logfile = arg
        return (
            bamfile_path,
            num_chr,
            window_size,
            step_size,
            zscore_threshold,
            lengthFilter,
            output_file,
            logfile,
        )
    except getopt.GetoptError:
        print("Invalid argument")
        sys.exit(1)


if __name__ == "__main__":
    (
        bamfile_path,
        num_chr,
        window_size,
        step_size,
        zscore_threshold,
        lengthFilter,
        output_file,
        logfile,
    ) = parse_arguments()
    logging.basicConfig(
        filename="%s" % (logfile),
        filemode="a",
        level=logging.INFO,
        format="%(asctime)s %(levelname)s - %(message)s",
    )
    logging.info("start")
    global seq

# Code CUDA
mod = SourceModule(
    """
//Kernel pour calculer la profondeur moyenne brute

__global__ void calcul_depth_kernel(int *depth_data, int seq_length, int window_size, int step_size, float *depth_results) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
        int pos_start = (idx * step_size) + 1;
        int pos_end = pos_start + window_size;
        int count_reads = 0;

                
        for (int i = pos_start; i < pos_end; i++) {
            count_reads += depth_data[i];
        }

        float avg_depth = (float)count_reads / window_size;
        depth_results[idx] = avg_depth;
    }
}

//Kernel pour calculer le GC content

__global__ void calcul_gc_kernel(char *gc_data, int seq_length, int window_size, int step_size, float *gc_results) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
        int pos_start = (idx * step_size) + 1;
        int pos_end = pos_start + window_size;
        int gc_count = 0;
    
        //printf(gc_data);
        //printf(" ");
        
        for (int i = pos_start; i <= pos_end; ++i) {
            if ((gc_data[i] == 'G') or (gc_data[i] == 'C') or (gc_data[i] == 'g') or (gc_data[i] == 'c')) {
                //printf(&gc_data[i]);
                //printf(" ");
                gc_count++;
            }
        }
        
        float avg_gc = ((float)gc_count / window_size) * 100;
        gc_results[idx] = avg_gc;
    }
}

// Kernel pour calculer la mappabilite moyenne ponderee

__global__ void calcul_map_kernel(float *map_data, int seq_length, int window_size, int step_size, float *map_results) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
        int pos_start = (idx * step_size) + 1;
        int pos_end = pos_start + window_size;
        float weighted_sum = 0.0;
        float total_weight = 0.0;

        for (int i = pos_start; i <= pos_end; ++i) {
            float weight = map_data[i];
            weighted_sum += weight;
            total_weight += 1;
        }

        float avg_map = weighted_sum / total_weight;
        map_results[idx] = avg_map;
    }
}

188 189 190 191 192 193 194 195 196 197 198
// Kernel pour filtrer selon le gc

__global__ void filter_read_gc_kernel(float *gc_results, float *depth_results, int n, float *gc_35, float *gc_40, float *gc_45, float *gc_50, float *gc_55) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;

    if (idx < n) {
        float gc_value = gc_results[idx];
        float depth_value = depth_results[idx];
        int gc_value_rounded = round(gc_value);

        if (gc_value_rounded == 35) {
199
            //printf(gc_value_rounded)
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            int pos = atomicAdd((int*)&gc_35[0], 1);
            gc_35[pos + 1] = depth_value;
        } else if (gc_value_rounded == 40) {
            int pos = atomicAdd((int*)&gc_40[0], 1);
            gc_40[pos + 1] = depth_value;
        } else if (gc_value_rounded == 45) {
            int pos = atomicAdd((int*)&gc_45[0], 1);
            gc_45[pos + 1] = depth_value;
        } else if (gc_value_rounded == 50) {
            int pos = atomicAdd((int*)&gc_50[0], 1);
            gc_50[pos + 1] = depth_value;
        } else if (gc_value_rounded == 55) {
            int pos = atomicAdd((int*)&gc_55[0], 1);
            gc_55[pos + 1] = depth_value;
        }
    }
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

// Kernel pour calculer la lecture de profondeur corrigee par la mappabilitee

__global__ void calcul_depth_correction_kernel(float *depth_results, float *map_results, int seq_length, int window_size, int step_size, float *depth_correction_results) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
        float avg_depth = depth_results[idx];
        float avg_map = map_results[idx];

        // Verification si avg_map est egal a 0 pour eviter la division par 0
        float depth_correction = (avg_map != 0.0f) ? (avg_depth / avg_map) : 0.0f;
        depth_correction_results[idx] = depth_correction;
    }
}


// Kernel pour normaliser la profondeur corrigee

__global__ void normalize_depth_kernel(float *depth_correction, float *gc_results, float m, float *gc_to_median, int seq_length, int window_size, int step_size, float *depth_normalize) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
        float mGC = gc_to_median[(int)gc_results[idx]];
        
        // Verification si mGC est egal a 0 pour eviter la division par 0
        float depth_normalize_val = (mGC != 0.0f) ? (depth_correction[idx] * m / mGC) : 0.0f;
        depth_normalize[idx] = depth_normalize_val;
    }
}

// Kernel pour calculer le ratio par window

251
__global__ void ratio_par_window_kernel(float *depth_results, float mean_chr, int seq_length, int window_size, int step_size, float *ratio_par_window_results) {
252 253 254
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
255
        float ratio = depth_results[idx] / mean_chr;
256 257 258 259
        ratio_par_window_results[idx] = ratio;
    }
}

260
// Kernel pour calculer le ratio normalise par window
261

262
__global__ void ratio_par_window_norm_kernel(float *normalize_depth_results, float mean_chr_norm, int seq_length, int window_size, int step_size, float *ratio_par_window_norm_results) {
263 264 265
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
266
        float ratio_norm = normalize_depth_results[idx] / mean_chr_norm;
267 268 269 270
        ratio_par_window_norm_results[idx] = ratio_norm;
    }
}

271
// Kernel pour calculer le z_score
272

273
__global__ void z_score_kernel(float *ratio_norm, float mean_ratio, float std_ratio, int seq_length, int window_size, int step_size, float *z_score_results) {
274 275 276
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
277 278 279 280 281 282 283 284 285
        float value = ratio_norm[idx];

        // Verification si la valeur est inf ou NaN, et remplacer par 0 si c est le cas
        if (isinf(value) || isnan(value)) {
            value = 0.0f;
        }

        // Calcul du Z-score
        float z_score = (value - mean_ratio) / std_ratio;
286 287 288 289 290 291
        z_score_results[idx] = z_score;
    }
}

// Kernel pour calculer le ratio divise par le ratio moyen

292
__global__ void ratio_par_mean_ratio_kernel(float *ratio_norm, float mean_ratio, int seq_length, int window_size, int step_size, float *ratio_par_mean_ratio_results) {
293 294 295
    int idx = threadIdx.x + blockIdx.x * blockDim.x;

    if (idx < seq_length - window_size + 1) {
296 297 298 299 300 301 302 303 304
        float value = ratio_norm[idx];

        // Verification si la valeur est inf ou NaN et remplacement par 0 si c est le cas
        if (isinf(value) || isnan(value)) {
            value = 0.0f;
        }

        // Calcul du ratio par rapport au ratio moyen
        float ratio_mean_ratio = value / mean_ratio;
305 306 307 308 309 310 311 312 313 314 315
        ratio_par_mean_ratio_results[idx] = ratio_mean_ratio;
    }
}

"""
)

# Obtention de la fonction de kernel compilée
calcul_depth_kernel_cuda = mod.get_function("calcul_depth_kernel")
calcul_gc_kernel_cuda = mod.get_function("calcul_gc_kernel")
calcul_map_kernel_cuda = mod.get_function("calcul_map_kernel")
316
filter_read_gc_kernel_cuda = mod.get_function("filter_read_gc_kernel")
317 318 319
calcul_depth_correction_kernel_cuda = mod.get_function("calcul_depth_correction_kernel")
normalize_depth_kernel_cuda = mod.get_function("normalize_depth_kernel")
ratio_par_window_kernel_cuda = mod.get_function("ratio_par_window_kernel")
320
ratio_par_window_norm_kernel_cuda = mod.get_function("ratio_par_window_norm_kernel")
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
z_score_kernel_cuda = mod.get_function("z_score_kernel")
ratio_par_mean_ratio_kernel_cuda = mod.get_function("ratio_par_mean_ratio_kernel")


def merge_intervals(intervals):
    """
    Merge overlapping intervals with the same score.

    This function takes a list of intervals and merges those that have the same score.

    Parameters
    ----------
    intervals : list of tuples
        A list where each element is a tuple (start, end, score).
        The intervals should be sorted by start position.

    Returns
    -------
    list of tuples
        A list of merged intervals (start, end, score) where overlapping intervals with the same score are combined.
    """
    merged = []
    start, end, score = intervals[0]
    for interval in intervals[1:]:
        if interval[2] == score:
            end = interval[1]
        else:
            merged.append((start, end, score))
            start, end, score = interval
    merged.append((start, end, score))
    
    return merged


def dico_mappabilite(mappability_file):
    """
    Create a dictionary of mappability scores from a file.

    This function reads a mappability file and creates a dictionary with chromosomes as keys and mappability scores as values.

    Parameters
    ----------
    mappability_file : str
        The path to the mappability file. Each line in the file should have the format:
        chromosome, start_pos, end_pos, score.

    Returns
    -------
    dict
        A dictionary where keys are chromosome names and values are another dictionary with start positions as keys
        and mappability scores as values.
    """
    logging.info("Entering dico_mappability")
    start_time = time.time()

    mappability_dico = {}

    logging.info(" In dico_mappability : Open file and create the dico")
    start_time_1 = time.time()

    with open(mappability_file, "r") as f:
        for line in f:
            fields = line.strip().split("\t")
            if len(fields) < 4:
                continue

            chromosome = fields[0]
            start_pos = int(fields[1])
            end_pos = int(fields[2])
            score = float(fields[3])

            if chromosome not in mappability_dico:
                mappability_dico[chromosome] = []

            mappability_dico[chromosome].append((start_pos, end_pos, score))

    end_time_1 = time.time()
    elapsed_time_1 = end_time_1 - start_time_1
    logging.info(f"In dico_mappability : Leaving file and create the dico (Time taken: {elapsed_time_1:.4f} seconds)")

    # Add position 0 for each chromosome
    logging.info(" In dico_mappability : Add position 0 for each chromosome")
    start_time_2 = time.time()

    for chromosome, intervals in mappability_dico.items():
        if intervals[0][0] != 0:
            mappability_dico[chromosome].insert(0, (0, intervals[0][0], 0))

    end_time_2 = time.time()
    elapsed_time_2 = end_time_2 - start_time_2
    logging.info(f"In dico_mappability : Ending add position 0 for each chromosome (Time taken: {elapsed_time_2:.4f} seconds)")

    # Merge intervals with the same score
    logging.info(" In dico_mappability : Merge intervals with the same score")
    start_time_3 = time.time()

    for chromosome, intervals in mappability_dico.items():
        merged_intervals = merge_intervals(intervals)
        mappability_dico[chromosome] = {
            start: score for start, _, score in merged_intervals
        }
    
    end_time_3 = time.time()
    elapsed_time_3 = end_time_3 - start_time_3
    logging.info(f"In dico_mappability : Ending merge intervals with the same score (Time taken: {elapsed_time_2:.4f} seconds)")

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving dico_mappability (Time taken: {elapsed_time:.4f} seconds)")

    return mappability_dico


def calcul_mappability(seq_length, mappability, chr):
    """
    Calculate mappability array for a given sequence length and chromosome.

    This function generates an array of mappability scores for a specific chromosome and sequence length.

    Parameters
    ----------
    seq_length : int
        The length of the sequence.
    mappability : dict
        A dictionary containing mappability information, with chromosomes as keys and dictionaries of start positions
        and scores as values.
    chr : str
        The chromosome for which the mappability is calculated.

    Returns
    -------
    numpy.ndarray
        An array of mappability scores for the given sequence length.
    """
    logging.info(f"Entering calcul_mappability for {chr}")
    start_time = time.time()
    
    map_data = np.zeros(seq_length, dtype=np.float32)
    sorted_keys = sorted(mappability[chr].keys())

    prev_bound = 0
    prev_mappability = 0

    logging.info(f"In calcul_mappability : Entering for bound in sorted_keys for {chr}")
    start_time_1 = time.time()

    for bound in sorted_keys:
        for i in range(prev_bound, min(seq_length, bound)):
            map_data[i] = prev_mappability
        prev_bound = bound
        prev_mappability = mappability[chr][bound]
 
    end_time_1 = time.time()
    elapsed_time_1 = end_time_1 - start_time_1
    logging.info(f"In calcul_mappability : Leaving for bound in sorted_keys for {chr} (Time taken: {elapsed_time_1:.4f} seconds)")

    # Fill remaining positions if sequence length exceeds last bound
    logging.info(f"In calcul_mappability : Entering for i in range(prev_bound, seq_length) for {chr}")
    start_time_2 = time.time()

    for i in range(prev_bound, seq_length):
        map_data[i] = prev_mappability

    end_time_2 = time.time()
    elapsed_time_2 = end_time_2 - start_time_2
    logging.info(f"In calcul_mappability : Leaving for i in range(prev_bound, seq_length) for {chr} (Time taken: {elapsed_time_2:.4f} seconds)")

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving dico_mappability for {chr} (Time taken: {elapsed_time:.4f} seconds)")

    return map_data


def parse_fasta(gc_file):
    """
    Parse a FASTA file and extract sequences.

    This function reads a FASTA file and extracts the sequences, storing them in a dictionary with headers as keys.

    Parameters
    ----------
    gc_file : str
        The path to the FASTA file. The file should be in standard FASTA format.

    Returns
    -------
    dict
        A dictionary where keys are sequence headers and values are the corresponding sequences.
    """
    logging.info("Entering parse_fasta")
    start_time = time.time()
    
    sequences = {}
    with open(gc_file, "r") as f:
        data = f.read().split(">")
        for entry in data[1:]:
            lines = entry.split("\n")
            header = lines[0]
            sequence = "".join(lines[1:])
            sequences[header] = sequence

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving parse_fasta (Time taken: {elapsed_time:.4f} seconds)")

    return sequences


def calcul_gc_content(seq_length, chr, seq):
    """
    Calculate the GC content of a given sequence.

    This function generates an array representing the GC content for a specific chromosome and sequence length.

    Parameters
    ----------
    seq_length : int
        The length of the sequence.
    chr : str
        The chromosome for which the GC content is calculated.
    seq : dict
        A dictionary containing sequences, with chromosome names as keys and sequences as values.

    Returns
    -------
    numpy.ndarray
        An array of bytes ('S' dtype) representing the GC content for the given sequence length.
    """
    logging.info(f"Entering calcul_gc_content for {chr}")
    start_time = time.time()

    gc_data = np.zeros(seq_length, dtype="S")
    for i in range(len(seq[chr])):
        gc_data[i] = seq[chr][i]

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving calcul_gc_content for {chr} (Time taken: {elapsed_time:.4f} seconds)")

    return gc_data


def calcul_depth_seq(seq_length, bamfile_path, chr):
    """
    Calculate the sequencing depth for a given chromosome.

    This function computes the sequencing depth for a specific chromosome and sequence length using a BAM file.

    Parameters
    ----------
    seq_length : int
        The length of the sequence.
    bamfile_path : pysam.AlignmentFile
        The path to the BAM file opened with pysam.AlignmentFile.
    chr : str
        The chromosome for which the depth is calculated.

    Returns
    -------
    numpy.ndarray
        An array of integers representing the sequencing depth for the given sequence length.
    """
    logging.info(f"Entering calcul_depth_seq for {chr}")
    start_time = time.time()
    
    depth_data = np.zeros(seq_length, dtype=np.int32)
    for pileupcolumn in bamfile_path.pileup(reference = chr):
        pos = pileupcolumn.reference_pos
        if pos >= seq_length:
            break
        depth_data[pos] = pileupcolumn.nsegments

    #depth_data = bamfile_path.pileup().nsegments


    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving calcul_depth_seq for {chr} (Time taken: {elapsed_time:.4f} seconds)")

    return depth_data
    
def calcul_depth_seq_samtools(seq_length, bamfile_path, chr, num_threads=12):
    """
    Calculate the sequencing depth for a given chromosome using a parallelized bash script.

    Parameters
    ----------
    seq_length : int
        The length of the sequence.
    bamfile_path : str
        The path to the BAM file.
    chr : str
        The chromosome for which the depth is calculated.
    num_threads : int
        The number of threads to use for parallel processing.

    Returns
    -------
    numpy.ndarray
        An array of integers representing the sequencing depth for the given sequence length.
    """
    logging.info(f"Entering calcul_depth_seq for {chr}")
    start_time = time.time()
    
    #Define the output file for depth results
    output_file_1 = f"/work/gad/shared/analyse/test/cnvGPU/test_scalability/tmp_depth_{chr}.out"
    
    # Run the parallelized bash script to calculate depth
    p = subprocess.Popen(["/work/gad/shared/analyse/test/cnvGPU/test_scalability/samtools_test_by_chr_multithreading_log.sh %s %s %s %s" % (bamfile_path, chr, output_file_1, num_threads)], shell = True, executable = "/bin/bash")
    
    p.communicate()
    
    # Create the numpy array for depth data
    depth_data = np.zeros(seq_length, dtype=np.int32)

   # Read the output file and fill the numpy array
    try:
        df = pd.read_csv(output_file_1, delim_whitespace=True, header=None, names=['chr', 'pos', 'depth'])
        df['pos'] -= 1  # Convert to 0-based index
        df = df[df['pos'] < seq_length]  # Ensure positions are within sequence length
        depth_data[df['pos']] = df['depth']
    except Exception as e:
        logging.error(f"Error reading depth file: {e}")
    
    # Clean up the output file
    subprocess.run(['rm', output_file_1])

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving calcul_depth_seq for {chr} (Time taken: {elapsed_time:.4f} seconds)")

    return depth_data

def calcul_med_total(depth_correction_results, chr):
    """
    Calculate the median of non-zero depth correction results.

    This function filters out zero values from the depth correction results and computes the median of the remaining values.

    Parameters
    ----------
    depth_correction_results : list or numpy.ndarray
        A list or array of depth correction values.

    Returns
    -------
    float
        The median of the non-zero depth correction values, or 0 if no non-zero values are present.
    """
    logging.info(f"Entering calcul_med_total for {chr}")
    start_time = time.time()
    
    depth_correction_results = np.array(depth_correction_results)
    # Filter results to remove zero values
    non_zero_results = depth_correction_results[depth_correction_results != 0]
    # Calculate the median of non-zero results
    m = np.median(non_zero_results) if non_zero_results.size > 0 else 0

    sys.stderr.write("Chromosome : %s, med_chr : %s\n" % (chr, m))
    
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving calcul_med_total for {chr} (Time taken: {elapsed_time:.4f} seconds)")
    
    return m


def calcul_med_same_gc(gc_results, depth_correction_results, chr):
    """
    Calculate the median depth correction for each unique GC content value.

    This function computes the median depth correction values for each unique GC content value, filtering out zero values.

    Parameters
    ----------
    gc_results : list or numpy.ndarray
        A list or array of GC content values.
    depth_correction_results : list or numpy.ndarray
        A list or array of depth correction values.

    Returns
    -------
    dict
        A dictionary where keys are unique GC content values and values are the median depth correction for those GC values.
    """
    logging.info(f"Entering calcul_med_same_gc for {chr}")
    start_time = time.time()
    
    mGC = []
    depth_correction_results_array = np.array(depth_correction_results)
    unique_gc_values = np.unique(gc_results)

    for gc in unique_gc_values:
        indices = np.where(
            gc_results == gc
        )  # Get positions of each unique GC value in gc_results
        # Filter depth correction results to remove zero values
        filtered_depths = depth_correction_results_array[indices][
            depth_correction_results_array[indices] != 0
        ]

        if (
            filtered_depths.size > 0
        ):  # Calculate median only if filtered results are not empty
            median_gc = np.median(filtered_depths)
        else:
            median_gc = 0  # Or another default value if all results are 0

        mGC.append((gc, median_gc))

    gc_to_median = dict(mGC)

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving calcul_med_same_gc for {chr} (Time taken: {elapsed_time:.4f} seconds)")
    
    return gc_to_median


def calcul_moy_totale(normalize_depth_results, chr):
    """
    Calculate the mean of non-zero normalized depth results.

    This function filters out zero values from the normalized depth results and computes the mean of the remaining values.

    Parameters
    ----------
    normalize_depth_results : list or numpy.ndarray
        A list or array of normalized depth values.

    Returns
    -------
    float
        The mean of the non-zero normalized depth values, or 0 if no non-zero values are present.
    """
    logging.info(f"Entering calcul_moy_totale for {chr}")
    start_time = time.time()   
    
    normalize_depth_results = np.array(normalize_depth_results)
    # Filter results to remove zero values
    non_zero_results = normalize_depth_results[normalize_depth_results != 0]
    # Calculate the mean of non-zero results
764
    mean_chr_norm = np.mean(non_zero_results) if non_zero_results.size > 0 else 0
765

766
    logging.info(f"Mean chr_norm_no_zero = {mean_chr_norm}")
767 768 769 770 771

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving calcul_moy_totale for {chr} (Time taken: {elapsed_time:.4f} seconds)")    
    
772
    return mean_chr_norm
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809


def calcul_std(normalize_depth_results, chr):
    """
    Calculate the standard deviation of non-zero normalized depth results.

    This function filters out zero values from the normalized depth results and computes the standard deviation of the remaining values.

    Parameters
    ----------
    normalize_depth_results : list or numpy.ndarray
        A list or array of normalized depth values.

    Returns
    -------
    float
        The standard deviation of the non-zero normalized depth values, or 0 if no non-zero values are present.
    """
    logging.info(f"Entering calcul_std for {chr}")
    start_time = time.time()  
    
    normalize_depth_results = np.array(normalize_depth_results)
    # Filter results to remove zero values
    non_zero_results = normalize_depth_results[normalize_depth_results != 0]
    # Calculate the standard deviation of non-zero results
    std_chr = np.std(non_zero_results) if non_zero_results.size > 0 else 0


    sys.stderr.write("Chromosome : %s, std_chr : %s\n" % (chr, std_chr))
    
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving calcul_std for {chr} (Time taken: {elapsed_time:.4f} seconds)")      
    
    return std_chr


810
def compute_mean_std_med(ratio_par_window_norm_results, chr, normalize_depth_results):
811 812 813 814 815 816 817
    """
    Compute the mean, standard deviation, and median of non-zero ratio results per window.

    This function filters out zero and -1 values from the ratio results per window and computes the mean, standard deviation, and median of the remaining values. Values greater than or equal to 5 are capped at 5.

    Parameters
    ----------
818
    ratio_par_window_norm_results : list or numpy.ndarray
819 820 821 822 823 824 825 826 827 828 829
        A list or array of ratio values per window.

    Returns
    -------
    tuple
        A tuple containing the mean, standard deviation, and median of the filtered ratio values.
    """
    logging.info(f"Entering compute_mean_std_med for {chr}")
    start_time = time.time()

    # Filter results to remove zero and -1 values
830 831
    ratio_par_window_norm_results = np.array(ratio_par_window_norm_results)
    non_zero_results = ratio_par_window_norm_results[ratio_par_window_norm_results != 0]
832
    non_zero_results = non_zero_results[np.isfinite(non_zero_results)]
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

    # Initialize list for stats computation
    table = []

    for value in non_zero_results:
        if float(value) >= 5:
            table.append(5)
        elif float(value) != -1:
            table.append(float(value))

    # Calculate the mean, standard deviation, and median of the filtered values
    mean_ratio = np.mean(table) if table else 0
    std_ratio = np.std(table) if table else 0
    med_ratio = np.median(table) if table else 0

    sys.stderr.write("Chromosome : %s, mean_ratio : %s, std_ratio : %s, med_ratio : %s\n" % (chr, mean_ratio, std_ratio, med_ratio))
    
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving compute_mean_std_med for {chr} (Time taken: {elapsed_time:.4f} seconds)") 

    # Return results
    return mean_ratio, std_ratio, med_ratio


def cn_level(x, chr):
    """
    Determine the copy number level based on the given value.

    This function returns the copy number level based on the input value `x`.

    Parameters
    ----------
    x : float
        The input value used to determine the copy number level.

    Returns
    -------
    int
        The copy number level:
        - 0 if x < 0.1
        - 1 if 0.1 <= x <= 0.75
        - 2 if 0.75 < x < 1 or round(x) == 1
        - round(x) if round(x) > 1
    """
    if x < 0.1:
        return 0
    elif x <= 0.75:
        return 1
    elif x < 1:
        return 2
    else:
        rounded_x = round(x)
        return 2 if rounded_x == 1 else rounded_x


def get_sample_name(bamfile_path):
    """
    Extract the sample name from a BAM file.

    This function reads the header of a BAM file to extract the sample name from the read groups.

    Parameters
    ----------
    bamfile_path : str
        The path to the BAM file.

    Returns
    -------
    str
        The sample name extracted from the BAM file. If no sample name is found, returns "UnknownSample".
    """

    logging.info(f"Entering get_sample_name")
    start_time = time.time()

    with pysam.AlignmentFile(bamfile_path, "rb") as bamfile:
        for read_group in bamfile.header.get("RG", []):
            if "SM" in read_group:
                return read_group["SM"]

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving get_sample_name (Time taken: {elapsed_time:.4f} seconds)")
    return "UnknownSample"


def create_signal(signal, chr, z_score_results, step_size):
    """
    Create a signal dictionary for a specific chromosome based on z-score results.

    This function populates a signal dictionary with positions and corresponding z-score results for a given chromosome.

    Parameters
    ----------
    signal : dict
        A dictionary to store the signal data.
    chr : str
        The chromosome for which the signal is created.
    z_score_results : list or numpy.ndarray
        A list or array of z-score results.
    step_size : int
        The step size used to calculate the positions.

    Returns
    -------
    None
        The function modifies the signal dictionary in place.
    """
    logging.info(f"Entering create_signal for {chr} (include copy_number_level)")
    start_time = time.time()

    if chr not in signal:
        signal[chr] = {}
    for i in range(len(z_score_results)):
        pos = (i * step_size) + 1
        signal[chr][pos] = z_score_results[i]
    
    #sys.stderr.write("\t signal %s\n" % signal[chr])
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving create_signal for {chr} (include copy_number_level) (Time taken: {elapsed_time:.4f} seconds)") 

def detect_events(
    z_score_results,
    zscore_threshold,
    events,
    med_ratio,
    ratio_par_mean_ratio_results,
    chr,
):
    """
    Detect genomic events based on z-score results and a z-score threshold.

    This function identifies significant genomic events where z-scores exceed the given threshold. Events are recorded in the `events` dictionary for the specified chromosome.

    Parameters
    ----------
    z_score_results : list or numpy.ndarray
        A list or array of z-score values.
    zscore_threshold : float
        The threshold for detecting significant z-score events.
    events : dict
        A dictionary to store detected events.
    med_ratio : float
        The median ratio used for copy number level calculations.
    ratio_par_mean_ratio_results : list or numpy.ndarray
        A list or array of ratio values compared to the mean ratio.
    chr : str
        The chromosome for which events are detected.

    Returns
    -------
    None
        The function modifies the events dictionary in place.
    """
    logging.info(f"Entering detect_events for {chr}")
    start_time = time.time()
    
    c = 0
    if chr not in events:
        events[chr] = {}
    for i, z_score in enumerate(z_score_results):
        if abs(z_score) >= zscore_threshold:
            if med_ratio != 0:
                c = cn_level(float(ratio_par_mean_ratio_results[i]), chr)
            if z_score >= 0:
                c = 3
            elif c == 2 and z_score < 0:
                c = 1
            pos_start = (i * step_size) + 1
            pos_end = pos_start + window_size

            events[chr][(pos_start, pos_end)] = c
    #sys.stderr.write("\t events %s\n" % events)

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving detect_events for {chr} (Time taken: {elapsed_time:.4f} seconds)") 

def segmentation(events, segment, chr):
    """
    Segment the detected events into contiguous regions with the same copy number level.

    This function processes the detected events and groups contiguous regions with the same copy number level into segments.

    Parameters
    ----------
    events : dict
        A dictionary of detected events for each chromosome.
    segment : dict
        A dictionary to store the segmented regions.

    Returns
    -------
    None
        The function modifies the segment dictionary in place.
    """
    logging.info(f"Entering segmentation for {chr}")
    start_time = time.time()
    
    for k in events.keys():
        sys.stderr.write("\tfor chromosome %s\n" % k)
        starts, oldPos, oldLevel = 1, 1, -1
        for p in sorted(events[k].keys()):
            level = events[k][p]
            #sys.stderr.write("\t p %s\n" % p)
            # new coordinates
            if p[0] > (oldPos + window_size):
                if (starts != 1) and (starts != p[0]):
                    if k not in segment:
                        segment[k] = {}
                    index = str(starts) + "-" + str(oldPos)
                    segment[k][index] = {}
                    segment[k][index]["start"] = starts
                    segment[k][index]["end"] = oldPos + window_size
                    segment[k][index]["cn"] = oldLevel
                    oldPos, starts, oldLevel = p[0], p[0], level
                    continue
                else:
                    starts = p[0]
            # case where it's contiguous but different level
            if level != oldLevel:
                if oldLevel != -1:
                    if k not in segment:
                        segment[k] = {}
                    index = str(starts) + "-" + str(oldPos)
                    segment[k][index] = {}
                    segment[k][index]["start"] = starts
                    segment[k][index]["end"] = oldPos
                    segment[k][index]["cn"] = oldLevel
                    oldPos, starts, oldLevel = p[0], p[0], level
                    continue
                else:
                    oldLevel = level
            oldPos, oldLevel = p[0], level

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving segmentation for {chr} (Time taken: {elapsed_time:.4f} seconds)") 

def display_results_vcf(sample, segment, signal, lengthFilter, output_file, chr):
    """
    Generate a VCF file containing structural variant calls based on segmented regions and signal data.

    This function creates a VCF (Variant Call Format) file containing structural variant calls derived from segmented regions and signal data. The structural variant type (DEL for deletion or DUP for duplication) is determined based on copy number levels and signal values. The resulting VCF file includes information about the chromosome, position, type of structural variant, copy number, and other relevant information.

    Parameters
    ----------
    sample : str
        The sample name to be included in the VCF file header.
    segment : dict
        A dictionary containing segmented regions with copy number information.
    signal : dict
        A dictionary containing signal data for each chromosome.
    lengthFilter : int
        The minimum length threshold for including variants in the VCF file.
    output_file : str
        The path to the output VCF file.

    Returns
    -------
    None
        This function writes the structural variant calls to the specified output file in VCF format.
    """
    global header_written
    logging.info(f"Entering display_results_vcf for {chr}")
    start_time = time.time()

    with open(output_file, "a") as f:
        if not header_written:
            f.write("##fileformat=VCFv4.2\n")
            f.write("##source=cnvcaller\n")
            f.write(
                '##INFO=<ID=SVTYPE,Number=1,Type=String,Description="Type of structural variant">\n'
            )
            f.write(
                '##INFO=<ID=SVLEN,Number=.,Type=Integer,Description="Difference in length between REF and ALT alleles">\n'
            )
            f.write(
                '##INFO=<ID=END,Number=1,Type=Integer,Description="End position of the variant described in this record">\n'
            )
            f.write('##INFO=<ID=CN,Number=1,Type=Integer,Description="Copy number">\n')
            f.write('##ALT=<ID=DEL,Description="Deletion">\n')
            f.write('##ALT=<ID=DUP,Description="Duplication">\n')
            f.write('##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">\n')
            f.write(
                "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t%s\n" % (sample)
            )
            header_written = True

        for k in segment.keys():
            #sys.stderr.write("\tfor chromosome %s\n" % k)
            for elt in sorted(segment[k].keys()):
                #sys.stderr.write("\tfor elt %s\n" % elt)
                if segment[k][elt]["start"] == segment[k][elt]["end"]:
                    continue
                if (segment[k][elt]["end"] - segment[k][elt]["start"]) < lengthFilter:
                    continue
                #sys.stderr.write("\t [segment[k][elt] %s\n" % [segment[k][elt]])
                if int(signal[k][segment[k][elt]["start"]]) < 0:
                    f.write(
                        "%s\t%s\t.\tN\t<DEL>\t.\t.\tSVTYPE=DEL;END=%s;VALUE=%s\tGT:GQ\t./.:0\n"
                        % (
                            k,
                            segment[k][elt]["start"],
                            segment[k][elt]["end"],
                            int(segment[k][elt]["cn"]),
                        )
                    )
                else:
                    f.write(
                        "%s\t%s\t.\tN\t<DUP>\t.\t.\tSVTYPE=DUP;END=%s;VALUE=%s\tGT:GQ\t./.:0\n"
                        % (
                            k,
                            segment[k][elt]["start"],
                            segment[k][elt]["end"],
                            int(segment[k][elt]["cn"]),
                        )
                    )

    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving display_results_vcf for {chr} (Time taken: {elapsed_time:.4f} seconds)") 


def filter_read_gc(gc_results, depth_results, chr):
    logging.info(f"Entering filter_read_gc for {chr}")
    start_time = time.time()

1163 1164
    gc_35, gc_40, gc_45, gc_50, gc_55 = [], [], [], [], []

1165
    for depth_value, gc_value in zip(depth_results, gc_results):
1166 1167
        gc_value_rounded = round(gc_value)
        if gc_value_rounded == 35:
1168
            gc_35.append(depth_value)
1169
        elif gc_value_rounded == 40:
1170
            gc_40.append(depth_value)
1171
        elif gc_value_rounded == 45:
1172
            gc_45.append(depth_value)
1173
        elif gc_value_rounded == 50:
1174
            gc_50.append(depth_value)
1175
        elif gc_value_rounded == 55:
1176 1177
            gc_55.append(depth_value)
    
1178 1179 1180 1181 1182
    gc_35, gc_40, gc_45, gc_50, gc_55 = map(np.array, [gc_35, gc_40, gc_45, gc_50, gc_55])
    
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving filter_read_gc for {chr} (Time taken: {elapsed_time:.4f} seconds)")
1183 1184

    gc_35_non_zero = gc_35[gc_35 != 0]
1185
    
1186 1187 1188 1189
    np_mean_gc_35 = np.mean(gc_35_non_zero)
    len_gc_35 = len(gc_35_non_zero)
    
    logging.info(f"np_mean_gc_35 = {np_mean_gc_35}, len_gc_35_non_zero = {len_gc_35}, len_gc_35 = {len(gc_35)}")
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

    return gc_35, gc_40, gc_45, gc_50, gc_55
    
def filter_read_gc_gpu(gc_results, d_gc_results, d_depth_results, grid_size, block_size, chr):
    logging.info(f"Entering filter_read_gc_gpu for {chr}")
    start_time = time.time()
    
    n = len(gc_results)
    max_size = n + 1
    
    gc_35_data = np.zeros(max_size, dtype = np.float32)
    gc_40_data = np.zeros(max_size, dtype = np.float32)
    gc_45_data = np.zeros(max_size, dtype = np.float32)
    gc_50_data = np.zeros(max_size, dtype = np.float32)
    gc_55_data = np.zeros(max_size, dtype = np.float32)
    
    gc_35_gpu = cuda.mem_alloc(gc_35_data.nbytes)
    gc_40_gpu = cuda.mem_alloc(gc_40_data.nbytes)
    gc_45_gpu = cuda.mem_alloc(gc_45_data.nbytes)
    gc_50_gpu = cuda.mem_alloc(gc_50_data.nbytes)
    gc_55_gpu = cuda.mem_alloc(gc_55_data.nbytes)
    
    cuda.memcpy_htod(gc_35_gpu, gc_35_data)
    cuda.memcpy_htod(gc_40_gpu, gc_40_data)
    cuda.memcpy_htod(gc_45_gpu, gc_45_data)
    cuda.memcpy_htod(gc_50_gpu, gc_50_data)
    cuda.memcpy_htod(gc_55_gpu, gc_55_data)
1217 1218
    
    
1219 1220 1221
    filter_read_gc_kernel_cuda(d_gc_results, d_depth_results, np.int32(n), gc_35_gpu, gc_40_gpu, gc_45_gpu, gc_50_gpu, gc_55_gpu, block=(block_size, 1, 1), grid=(grid_size, 1))

    # Copy back results
1222 1223 1224 1225 1226
    gc_35 = np.zeros(max_size, dtype = np.float32)
    gc_40 = np.zeros(max_size, dtype = np.float32)
    gc_45 = np.zeros(max_size, dtype = np.float32)
    gc_50 = np.zeros(max_size, dtype = np.float32)
    gc_55 = np.zeros(max_size, dtype = np.float32)
1227 1228 1229 1230 1231 1232 1233
    
    cuda.memcpy_dtoh(gc_35, gc_35_gpu)
    cuda.memcpy_dtoh(gc_40, gc_40_gpu)
    cuda.memcpy_dtoh(gc_45, gc_45_gpu)
    cuda.memcpy_dtoh(gc_50, gc_50_gpu)
    cuda.memcpy_dtoh(gc_55, gc_55_gpu)
    
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    gc_35_non_zero = gc_35[gc_35 != 0]  # Filtre les valeurs égales à 0
    
    np_mean_gc_35 = np.mean(gc_35_non_zero)
    len_gc_35 = len(gc_35_non_zero)
    
    logging.info(f"np_mean_gc_35 = {np_mean_gc_35}, len_gc_35_non_zero = {len_gc_35}, len_gc_35 = {len(gc_35)}")
    
    gc_35 = gc_35[gc_35 != 0]
    gc_40 = gc_40[gc_40 != 0]
    gc_45 = gc_40[gc_40 != 0]
    gc_50 = gc_40[gc_40 != 0]
    gc_55 = gc_40[gc_40 != 0]
1246

1247 1248 1249 1250
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving filter_read_gc for {chr} (Time taken: {elapsed_time:.4f} seconds)") 

1251
    return gc_35, gc_40, gc_45, gc_50, gc_55
1252

1253
def calc_polynom(gc_35, gc_40, gc_45, gc_50, gc_55, chr):
1254 1255 1256
    logging.info(f"Entering calc_polynom for {chr}")
    start_time = time.time()
    
1257
    polynomials = []
1258 1259 1260 1261
    depth_arrays = [gc_35, gc_40, gc_45, gc_50, gc_55]

    for depths in depth_arrays:
        if len(depths) > 0:
1262 1263 1264
            x = np.arange(len(depths))  # Créer un tableau d'indices pour les abscisses
            coeffs = np.polyfit(x, depths, 3)  # Ajuster un polynôme de degré 3
            p = np.poly1d(coeffs)  # Créer un polynôme à partir des coefficients
1265 1266 1267 1268 1269 1270 1271 1272 1273
            polynomials.append(p)
        else:
            polynomials.append(None)
            
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving calc_polynom for {chr} (Time taken: {elapsed_time:.4f} seconds)") 
    return polynomials

1274
def calc_mean_chr(depth_results, chr):
1275 1276 1277 1278 1279 1280 1281 1282
    logging.info(f"Entering calc_mean_chr for {chr}")
    start_time = time.time()   
    
    depth_results = np.array(depth_results)
    # Filter results to remove zero values
    non_zero_results = depth_results[depth_results != 0]
    # Calculate the mean of non-zero results
    mean_chr = np.mean(non_zero_results) if non_zero_results.size > 0 else 0
1283

1284 1285 1286 1287
    sys.stderr.write("Chromosome : %s, mean_chr : %s\n" % (chr, mean_chr))

    end_time = time.time()
    elapsed_time = end_time - start_time
1288
    logging.info(f"Leaving calc_mean_chr for {chr} (Time taken: {elapsed_time:.4f} seconds)")    
1289 1290 1291
    
    return mean_chr

1292 1293 1294 1295 1296
def find_polynom(ratio_par_window_results, chr, polynomials, depth_results):
    logging.info(f"Entering find_polynom for {chr}")
    start_time = time.time()
    
    # Convert ratio_par_window_results to numpy array
1297 1298
    ratio_par_window_results = np.array(ratio_par_window_results)
    cn = ratio_par_window_results * 2
1299
    cn_to_test = cn[(cn >= 1.5) & (cn < 2.5)]
1300
    cn_unique = np.unique(cn_to_test)
1301 1302 1303

    best_polynom = None
    best_knorm_diff = float('inf')
1304
    
1305 1306 1307 1308 1309
    depth_results_non_zero = depth_results[depth_results != 0]
    depth_results_filter = np.unique(depth_results_non_zero)
    
    logging.info(f"depth_results_len = {len(depth_results)}, depth_results_non_zero_len = {len(depth_results_non_zero)}, depth_results_filter_len = {len(depth_results_filter)}")
    
1310 1311 1312 1313 1314 1315 1316
    # Precompute k / 2 for each unique cn value
    cn_unique_div2 = cn_unique / 2

    # Iterate over each polynomial
    for polynom in polynomials:
        logging.info(f"polynom = {polynom}\tpolynomials = {polynomials}\tcn_unique = {cn_unique}")
        if polynom is not None:
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
            # Calculate knorm for all cn_unique values at once
            knorms = polynom(cn_unique) * cn_unique_div2[:, None]
            
            # Calculate the differences between knorms and each RCi, then find the minimum difference
            for RCi in depth_results_filter:
                knorm_diffs = np.abs(knorms - RCi)
                min_knorm_diff = np.min(knorm_diffs)

                if min_knorm_diff < best_knorm_diff:
                    best_knorm_diff = min_knorm_diff
                    best_polynom = polynom
1328

1329 1330
    end_time = time.time()
    elapsed_time = end_time - start_time
1331
    logging.info(f"Leaving find_polynom for {chr} (Time taken: {elapsed_time:.4f} seconds)") 
1332
    return best_polynom
1333

1334 1335 1336 1337 1338 1339
def normalize(depth_results, best_polynom, map_results):
    logging.info("Entering normalization")
    start_time = time.time()
    
    normalize_depth_results = []
    for i in range(len(depth_results)):
1340
        if depth_results[i] != 0 and map_results[i] != 0:
1341 1342 1343 1344
            normalized_value = depth_results[i] / (best_polynom(i) * map_results[i]) if best_polynom is not None else depth_results[i]
            #logging.info(f"normalized_value = {normalized_value}\ti = {i}\tdepth_results[i] = {depth_results[i]}\tbest_polynom(i) = {best_polynom(i)}\tmap_results[i] = {map_results[i]}")
            normalize_depth_results.append(normalized_value)
        else:
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
            normalize_depth_results.append(0)
    
    #normalize_depth_results_unique = np.unique(normalize_depth_results)
    #logging.info(f"normalize_depth_results_unique = {normalize_depth_results_unique}") 
    
    
    has_nan = np.isnan(normalize_depth_results).any()
    has_inf = np.isinf(normalize_depth_results).any()

    if has_nan:
        logging.warning(f"{chr} contient des valeurs NaN.")
    if has_inf:
        logging.warning(f"{chr} contient des valeurs Inf.")
1358 1359 1360 1361 1362 1363
    
    end_time = time.time()
    elapsed_time = end_time - start_time
    logging.info(f"Leaving normalization (Time taken: {elapsed_time:.4f} seconds)") 
    
    return np.array(normalize_depth_results)
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
def main_calcul(
    bamfile_path,
    chr,
    seq_length,
    window_size,
    step_size,
    zscore_threshold,
    lengthFilter,
    output_file,
    sample,
):
    """
    Perform structural variant detection and VCF file generation.

    This function orchestrates a series of computations and data manipulations,
    leveraging GPU acceleration for performance improvements in genomic data analysis.

    Parameters
    ----------
        bamfile_path : str
            Path to the BAM file containing aligned reads.
        chr : str
            Chromosome identifier for which analysis is performed.
        seq_length : int
            Length of the chromosome sequence.
        window_size : int
            Size of the sliding window used for analysis.
        step_size : int
            Size of the step when moving the window along the chromosome.
        zscore_threshold : float
            Threshold value for detecting significant events based on Z-scores.
        lengthFilter : int
            Minimum length threshold for including variants in the VCF file.
        output_file : str
            Path to the output VCF file.
        sample : str
            Name of the sample being analyzed.

    Returns
    -------
        None
    """

    sys.stderr.write("\t entering main_calcul\n")
    global seq
    events = {}
    segment = {}
    signal = {}

    # Appeler les différentes fonctions
    map_data = calcul_mappability(seq_length, mappability, chr)
    gc_data = calcul_gc_content(seq_length, chr, seq)
    #depth_data = calcul_depth_seq(seq_length, bamfile_path, chr)
    depth_data = calcul_depth_seq_samtools(seq_length, bamfile_path, chr)
    
    # Transférer le tableau NumPy vers CUDA
    d_depth_data = cuda.mem_alloc(depth_data.nbytes)
    cuda.memcpy_htod(d_depth_data, depth_data)
    sys.stderr.write(
        "\t d_depth_data : %s, %s\n"
        % (d_depth_data, d_depth_data.as_buffer(sys.getsizeof(depth_data)))
    )

    d_gc_data = cuda.mem_alloc(gc_data.nbytes)
    cuda.memcpy_htod(d_gc_data, gc_data)
    sys.stderr.write(
        "\t d_gc_data : %s, %s\n"
        % (d_gc_data, d_gc_data.as_buffer(sys.getsizeof(gc_data)))
    )

    d_map_data = cuda.mem_alloc(map_data.nbytes)
    cuda.memcpy_htod(d_map_data, map_data)
    sys.stderr.write(
        "\t d_map_data : %s, %s\n"
        % (d_map_data, d_map_data.as_buffer(sys.getsizeof(map_data)))
    )

    # Calculer la taille de la grille et de bloc pour CUDA
    block_size = num_cores
    sys.stderr.write("\t blocksize (nb de threads) = %s\n" % (num_cores))
    grid_size = int((int((seq_length - window_size) / step_size) + 1) / block_size) + 1
    sys.stderr.write("\t grid_size = \n")

    # Initialiser les tableaux pour stocker les résultats
    depth_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de depth_results\n")

    gc_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de gc_results\n")

    map_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de map_results\n")

    depth_correction_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de depth_correction_results\n")

    normalize_depth_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de normalize_depth_results\n")

    ratio_par_window_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de ratio_par_window\n")

1479 1480 1481 1482 1483
    ratio_par_window_norm_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de ratio_par_window_norm\n")

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    z_score_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de z_score_results\n")

    ratio_par_mean_ratio_results = np.zeros(
        int((seq_length - window_size) / step_size) + 1, dtype=np.float32
    )
    sys.stderr.write("\t Definition de ratio_par_mean_ratio_results\n")

    # Allouer de la mémoire pour les résultats sur le périphérique CUDA
    d_depth_results = cuda.mem_alloc(depth_results.nbytes)
    sys.stderr.write(
        "\t d_depth_results = %s\n"
        % d_depth_results.as_buffer(sys.getsizeof(d_depth_results))
    )
    sys.stderr.write("\t depth_results.nbytes = %s\n" % depth_results.nbytes)

    d_gc_results = cuda.mem_alloc(gc_results.nbytes)
    sys.stderr.write(
        "\t d_gc_results = %s\n" % d_gc_results.as_buffer(sys.getsizeof(d_gc_results))
    )
    sys.stderr.write("\t gc_results.nbytes = %s\n" % gc_results.nbytes)

    d_map_results = cuda.mem_alloc(map_results.nbytes)
    sys.stderr.write(
        "\t d_map_results = %s\n"
        % d_map_results.as_buffer(sys.getsizeof(d_map_results))
    )
    sys.stderr.write("\t map_results.nbytes = %s\n" % map_results.nbytes)

    d_depth_correction_results = cuda.mem_alloc(depth_correction_results.nbytes)
    sys.stderr.write(
        "\t d_depth_correction_results = %s\n"
        % d_depth_correction_results.as_buffer(
            sys.getsizeof(d_depth_correction_results)
        )
    )
    sys.stderr.write(
        "\t depth_correction_results.nbytes = %s\n" % depth_correction_results.nbytes
    )

1526 1527 1528 1529 1530 1531 1532 1533
    #d_normalize_depth_results = cuda.mem_alloc(normalize_depth_results.nbytes)
    #sys.stderr.write(
     #   "\t d_normalize_depth_results = %s\n"
      #  % d_normalize_depth_results.as_buffer(sys.getsizeof(d_normalize_depth_results))
    #)
    #sys.stderr.write(
     #   "\t normalize_depth_results.nbytes = %s\n" % normalize_depth_results.nbytes
    #)
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

    d_ratio_par_window_results = cuda.mem_alloc(ratio_par_window_results.nbytes)
    sys.stderr.write(
        "\t d_ratio_par_window_results = %s\n"
        % d_ratio_par_window_results.as_buffer(
            sys.getsizeof(d_ratio_par_window_results)
        )
    )
    sys.stderr.write(
        "\t ratio_par_window_results.nbytes = %s\n" % ratio_par_window_results.nbytes
    )

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    d_ratio_par_window_norm_results = cuda.mem_alloc(ratio_par_window_norm_results.nbytes)
    sys.stderr.write(
        "\t d_ratio_par_window_norm_results = %s\n"
        % d_ratio_par_window_norm_results.as_buffer(
            sys.getsizeof(d_ratio_par_window_norm_results)
        )
    )
    sys.stderr.write(
        "\t ratio_par_window_norm_results.nbytes = %s\n" % ratio_par_window_norm_results.nbytes
    )

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    d_z_score_results = cuda.mem_alloc(z_score_results.nbytes)
    sys.stderr.write(
        "\t d_z_score_results = %s\n"
        % d_z_score_results.as_buffer(sys.getsizeof(d_z_score_results))
    )
    sys.stderr.write("\t z_score_results.nbytes = %s\n" % z_score_results.nbytes)

    d_ratio_par_mean_ratio_results = cuda.mem_alloc(ratio_par_mean_ratio_results.nbytes)
    sys.stderr.write(
        "\t d_ratio_par_mean_ratio_results = %s\n"
        % d_ratio_par_mean_ratio_results.as_buffer(
            sys.getsizeof(d_ratio_par_mean_ratio_results)
        )
    )
    sys.stderr.write(
        "\t ratio_par_mean_ratio_results.nbytes = %s\n"
        % ratio_par_mean_ratio_results.nbytes
    )

    # Appeler la fonction de calcul de profondeur avec CUDA
    calcul_depth_kernel_cuda(
        d_depth_data,
        np.int32(seq_length),
        np.int32(window_size),
        np.int32(step_size),
        d_depth_results,
        block=(block_size, 1, 1),
        grid=(grid_size, 1),
    )
    sys.stderr.write("\t appel fonction calcul_depth_kernel_cuda\n")

    calcul_gc_kernel_cuda(
        d_gc_data,
        np.int32(seq_length),
        np.int32(window_size),
        np.int32(step_size),
        d_gc_results,
        block=(block_size, 1, 1),
        grid=(grid_size, 1),
    )
    sys.stderr.write("\t appel fonction calcul_gc_kernel_cuda\n")

    calcul_map_kernel_cuda(
        d_map_data,
        np.int32(seq_length),
        np.int32(window_size),
        np.int32(step_size),
        d_map_results,
        block=(block_size, 1, 1),
        grid=(grid_size, 1),
    )
    sys.stderr.write("\t appel fonction calcul_map_kernel_cuda\n")

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    #calcul_depth_correction_kernel_cuda(
     #   d_depth_results,
      #  d_map_results,
       # np.int32(seq_length),
        #np.int32(window_size),
        #np.int32(step_size),
        #d_depth_correction_results,
        #block=(block_size, 1, 1),
        #grid=(grid_size, 1),
    #)
    #sys.stderr.write("\t appel fonction calcul_depth_correction_kernel_cuda\n")
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

    context.synchronize()

    # Copier les résultats depuis le périphérique CUDA vers l'hôte

    cuda.memcpy_dtoh(depth_results, d_depth_results)  # cuda.memcpy_dtoh(dest, src)
    sys.stderr.write(
        "\t Copie les resultats du GPU (d_depth_results) vers le CPU (depth_results)\n"
    )

    cuda.memcpy_dtoh(gc_results, d_gc_results)  # cuda.memcpy_dtoh(dest, src)
    sys.stderr.write(
        "\t Copie les resultats du GPU (d_gc_results) vers le CPU (gc_results)\n"
    )

    cuda.memcpy_dtoh(map_results, d_map_results)  # cuda.memcpy_dtoh(dest, src)
    sys.stderr.write(
        "\t Copie les resultats du GPU (d_map_results) vers le CPU (map_results)\n"
    )

1641 1642 1643 1644 1645 1646
   # cuda.memcpy_dtoh(
    #    depth_correction_results, d_depth_correction_results
   # )  # cuda.memcpy_dtoh(dest, src)
    #sys.stderr.write(
     #   "\t Copie les resultats du GPU (d_depth_correction_results) vers le CPU (depth_correction_results)\n"
    #)
1647 1648 1649 1650 1651

    ### NORMALISATION###

    #Appel fonction read_depth selon gc
    sys.stderr.write("\t appel fonctions filter_results\n")
1652 1653
    #gc_35, gc_40, gc_45, gc_50, gc_55 = filter_read_gc(gc_results, depth_results, chr)
    gc_35, gc_40, gc_45, gc_50, gc_55 = filter_read_gc_gpu(gc_results, d_gc_results, d_depth_results, grid_size, block_size, chr)
1654 1655

    #Appel fonction calcul polynomes
1656
    sys.stderr.write("\t appel fonctions calc_polynom\n")
1657
    polynomials = calc_polynom(gc_35, gc_40, gc_45, gc_50, gc_55, chr)
1658
    
1659
    #Appel fonction calcul moyenne
1660
    sys.stderr.write("\t appel fonctions calc_mean_chr\n")
1661 1662 1663
    mean_chr = calc_mean_chr(depth_results, chr)
    
    # Appeler le kernel de ratio
1664
    sys.stderr.write("\t appel fonction ratio_par_window_kernel_cuda\n")
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
    ratio_par_window_kernel_cuda(
        d_depth_results,
        np.float32(mean_chr),
        np.int32(seq_length),
        np.int32(window_size),
        np.int32(step_size),
        d_ratio_par_window_results,
        block=(block_size, 1, 1),
        grid=(grid_size, 1),
    )
1675

1676 1677 1678 1679

    context.synchronize()
    
    # Copier les resultats ratio depuis le peripherique CUDA vers l'hote
1680
    sys.stderr.write("\tCopie des resultats ratio depuis le peripherique CUDA vers l'hote\n")
1681 1682
    cuda.memcpy_dtoh(ratio_par_window_results, d_ratio_par_window_results)
    
1683
    #Appel fonction meilleur polynome
1684
    sys.stderr.write("\t appel fonction find_polynom\n")
1685 1686 1687
    best_polynom = find_polynom(ratio_par_window_results, chr, polynomials, depth_results)
    
    #Appel fonction normalisation
1688
    sys.stderr.write("\t appel fonction normalize\n")
1689 1690
    normalize_depth_results = normalize(depth_results, best_polynom, map_results)
    
1691
    # Appel fonctions medianes
1692 1693 1694
    #sys.stderr.write("\t appel fonctions calcul medianes\n")
    #m = calcul_med_total(depth_correction_results, chr)
    #gc_to_median = calcul_med_same_gc(gc_results, depth_correction_results, chr)
1695 1696

    # Convertir gc_to_median en un tableau NumPy pour le transfert vers CUDA
1697 1698 1699 1700
    #sys.stderr.write("\t Conversion medianes en tableau numpy\n")
    #gc_to_median_array = np.zeros(int(max(gc_results)) + 1, dtype=np.float32)
    #for gc, median in gc_to_median.items():
     #   gc_to_median_array[int(gc)] = median
1701 1702

    # Allouer de la memoire pour gc_to_median sur le peripherique CUDA
1703 1704 1705
 #   sys.stderr.write("\t Allocation mémoire médianes GPU\n")
  #  d_gc_to_median = cuda.mem_alloc(gc_to_median_array.nbytes)
   # cuda.memcpy_htod(d_gc_to_median, gc_to_median_array)
1706 1707

    # Appeler le kernel de normalisation
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
    #normalize_depth_kernel_cuda(
      #  d_depth_correction_results,
     #   d_gc_results,
     #   np.float32(m),
     #   d_gc_to_median,
     #   np.int32(seq_length),
     #   np.int32(window_size),
     #   np.int32(step_size),
     #   d_normalize_depth_results,
     #   block=(block_size, 1, 1),
     #   grid=(grid_size, 1),
    #)
    #sys.stderr.write("\t appel fonction normalize_depth_kernel_cuda\n")

    #context.synchronize()

    #Copier les resultats normalises depuis l'hôte vers le peripherique CUDA
1725
    sys.stderr.write("\t Copie des resultats normalises depuis l'hôte vers le peripherique CUDA\n")
1726 1727 1728
    d_normalize_depth_results = cuda.mem_alloc(normalize_depth_results.nbytes)
    cuda.memcpy_htod(d_normalize_depth_results, normalize_depth_results)
    
1729 1730 1731 1732
    ### Ratio par window###

    # Appel fonction moyenne
    sys.stderr.write("\t appel fonction calcul moyenne\n")
1733
    mean_chr_norm = calcul_moy_totale(normalize_depth_results, chr)
1734

1735 1736
    # Appeler le kernel de ratio normalise
    ratio_par_window_norm_kernel_cuda(
1737
        d_normalize_depth_results,
1738
        np.float32(mean_chr_norm),
1739 1740 1741
        np.int32(seq_length),
        np.int32(window_size),
        np.int32(step_size),
1742
        d_ratio_par_window_norm_results,
1743 1744 1745
        block=(block_size, 1, 1),
        grid=(grid_size, 1),
    )
1746
    sys.stderr.write("\t appel fonction ratio_par_window_norm_kernel_cuda\n")
1747 1748 1749 1750

    context.synchronize()

    # Copier les resultats ratio depuis le peripherique CUDA vers l'hote
1751
    sys.stderr.write("\t Copie des resultats ratio depuis le peripherique CUDA vers l'hote\n")
1752
    cuda.memcpy_dtoh(ratio_par_window_norm_results, d_ratio_par_window_norm_results)
1753 1754

    # Création table à partir du ratio
1755 1756
    sys.stderr.write("\t Appel fonction compute_mean_std_med\n")
    mean_ratio, std_ratio, med_ratio = compute_mean_std_med(ratio_par_window_norm_results, chr, normalize_depth_results)
1757 1758 1759

    # Appeler le kernel de calcule du ratio divisé par le ratio moyen
    ratio_par_mean_ratio_kernel_cuda(
1760
        d_ratio_par_window_norm_results,
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
        np.float32(mean_ratio),
        np.int32(seq_length),
        np.int32(window_size),
        np.int32(step_size),
        d_ratio_par_mean_ratio_results,
        block=(block_size, 1, 1),
        grid=(grid_size, 1),
    )
    sys.stderr.write("\t appel fonction ratio_par_mean_ratio_kernel_cuda\n")

    # Appeler le kernel de Z-score
    z_score_kernel_cuda(
1773
        d_ratio_par_window_norm_results,
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
        np.float32(mean_ratio),
        np.float32(std_ratio),
        np.int32(seq_length),
        np.int32(window_size),
        np.int32(step_size),
        d_z_score_results,
        block=(block_size, 1, 1),
        grid=(grid_size, 1),
    )
    sys.stderr.write("\t appel fonction z_score_kernel_cuda\n")

    context.synchronize()

    # Copier les resultats ratio depuis le peripherique CUDA vers l'hote
    cuda.memcpy_dtoh(ratio_par_mean_ratio_results, d_ratio_par_mean_ratio_results)
    cuda.memcpy_dtoh(z_score_results, d_z_score_results)

    # Appel fonction create signal
    create_signal(signal, chr, z_score_results, step_size)

    # Appel fonction detect events
    detect_events(
        z_score_results,
        zscore_threshold,
        events,
        med_ratio,
        ratio_par_mean_ratio_results,
        chr,
    )

    # Appel fonction segmentation
    segmentation(events, segment, chr)

    # Appel fonction display_results_vcf
1808
    #display_results_vcf(sample, segment, signal, lengthFilter, output_file, chr)
1809 1810

    #Ecrire les résultats dans le fichier de sortie
1811 1812 1813 1814 1815 1816
    with open(output_file, 'a') as f:
        sys.stderr.write("\t ecriture des fichiers\n")
        for i, (depth_data, depth_normalize_val, gc_data, map_data, ratio_norm, ratio_mean_ratio, z_score) in enumerate(zip(depth_results, normalize_depth_results, gc_results, map_results, ratio_par_window_norm_results, ratio_par_mean_ratio_results, z_score_results)):
            pos_start = (i * step_size) + 1
            pos_end = pos_start + window_size
            f.write(f"{chr}\t{pos_start}\t{pos_end}\t{depth_data}\t{depth_normalize_val}\t{gc_data}\t{map_data}\t{ratio_norm}\t{ratio_mean_ratio}\t{z_score}\n")
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

# Programme principal
# Calcul nombre de coeurs max pour le GPU
header_written = False

sample = get_sample_name(bamfile_path)
device = cuda.Device(0)
attributes = device.get_attributes()
num_cores = attributes[1]
print("Nombre de CPU: ", multiprocessing.cpu_count())
print(f"Nombre de coeurs max GPU: {num_cores}")

gc_file = "/work/gad/shared/pipeline/grch38/index/grch38_essential.fa"
mappability_file = "/work/gad/shared/pipeline/grch38/cnv/k100.Umap.MultiTrackMappability.bedgraph"
seq = parse_fasta(gc_file)
mappability = dico_mappabilite(mappability_file)
#bamfile_path_2 = "/work/gad/shared/analyse/test/cnvGPU/test_scalability/dijen1000.bam"


if num_chr == "ALL" :
    with pysam.AlignmentFile(bamfile_path, "rb") as bamfile_handle:
        for i, seq_length in enumerate(bamfile_handle.lengths):
            chr = bamfile_handle.references[i]
            
            #Exclude chrM
            if chr == "chrM":
                continue
                
            sys.stderr.write("Chromosome : %s, seq length : %s\n" % (chr, seq_length))

            # Appeler la fonction de calcul de la profondeur moyenne pour ce chromosome
            main_calcul(
                bamfile_path,
                chr,
                seq_length,
                window_size,
                step_size,
                zscore_threshold,
                lengthFilter,
                output_file,
                sample,
            )

        logging.basicConfig(
            filename="%s" % (logfile),
            filemode="a",
            level=logging.INFO,
            format="%(asctime)s %(levelname)s - %(message)s",
        )
        logging.info("end")

else :
    with pysam.AlignmentFile(bamfile_path, "rb") as bamfile_handle:
        seq_length = bamfile_handle.lengths[int(num_chr) - 1]
        chr = bamfile_handle.references[int(num_chr) - 1]
        sys.stderr.write("Chromosome : %s, seq length : %s\n" % (chr, seq_length))

        # Appeler la fonction de calcul de la profondeur moyenne pour ce chromosome
        main_calcul(
            bamfile_path,
            chr,
            seq_length,
            window_size,
            step_size,
            zscore_threshold,
            lengthFilter,
            output_file,
            sample,
        )

    logging.basicConfig(
        filename="%s" % (logfile),
        filemode="a",
        level=logging.INFO,
        format="%(asctime)s %(levelname)s - %(message)s",
    )
    logging.info("end")